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Evolving Random Graph
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Initial state: regular random graph (degree = 0 )

Define two classes of nodes

- Active nodes: degree <d

- Inactive nodes: degree =d

Sequential linking

= Pick two active nodes

= Draw a link

Final state: regular random graph (degree = d )
Erdos 60,VWormald 84



Percolation Transition

v d=1 microscopic graphs, dimers e—e oo oo

v d=2 mesoscopic graphs, rings s &-& Q Np =k~ 1

? d>2 one macroscopic graph = “giant component”

- Nonpercolating phase: microscopic graphs only

- Percolating phase: one giant component coexists
with many microscopic graphs

Question

How many links (per node) are needed for
the giant component to emerge?

Answer
0.577200 (when d=3)



Degree Distribution

Distribution of nodes with degree j is n;
Density of active nodes v=ng+n1+---+n4-1 v=1-n,

Linking Process
(i,7) = i+ 1,7+1) 4,5<d

Active nodes control linking process,
effectively linear evolution equation 7= / dt’ v(t)
0

an ;
d—t] = v (nj—1 —n)
Solve using an effective time variable
T

Truncated Poisson Distribution  wormald 99



Degree Distribution
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Isolated nodes dominate initially
All nodes become inactive eventually



Unbounded Random Graphs

Erdos-Renyi

Cluster = a connected graph component ’\;4.
Links involving two separate components lead to merger

Aggregation rate = product of cluster sizes

Kij =1
Master equation for size distribution
dc
—k — — Z zgczcj — kcy cp(t =0) = 0p1
z—l—]—

Master equation for generating function

oc  9C _1( 9C\’
ot " or 2 \" oz



Hamilton-Jacobi Theory |

® Master equation is a first-order PDE

ac  ac 1 ac\’
I P C(z,0) =
ot ¥ s 2(5’33:1;) o
® Recognize as a Hamilton-Jacobi equation
0C(x,t)
- H(x,p) =
=y (x,p) =0
® By identifying “momentum” and “Hamiltonian™
oC 1
= __ H=q1op— = 2
p=—  and zp — 5 (zp)
® Hamilton-Jacobi equations generate two coupled ODEs
de _OH —dp _ _OH e _ 1 — b _
@ o at - ar 0 @ cU-ee) g =—pld-ap)

2(0)=1-g p(0)=1
Initial coordinate unknown, final coordinate known!
Hamiltonian is a conserved quantity



Solution |

Coordinate and momentum are immediate

r=(1—g)ed’ p=e 9

Size of giant component found immediately

g=1-) ka=1-p(0)
K

Satisfies a closes equation

0.6
g |

l—g=¢e 9%

Nontrivial solution beyond the percolation threshold

ty =1

The giant component emerges when
the average degree equals one




Bounded Random Graphs
Total size of components provides insufficient description

Describe components by a d+1 dimensional vector whose
components specify number of nodes with given degree

(k07k17 kd) k=ko+ki+ -+ ky

(0,2,1,2 O\i)b o\*/qo (0,3,1,1)

Multivariate aggregation process

Aggregation rate is product of the number of active nodes
K(l,m)=(l—13)(m —mg)

Why can’t we get away with two variables only!?

Node degrees are coupled!

0—-1—2—3



Hamilton-Jacobi Theory Il

® Master equation is a first-order PDE

oC 1 [ oC B
i (Z a?j+1 ) ij 8:63 C'(x,0) = zg

® Recognize as a Hamilton-Jacobi equatlon

oC
(%, 7) FH(x,VC, 1) =
ot
® By identifying momentum " and “Hamiltonian™
HQ d
X P, T Z:ijj QV(T) 11, :izjﬂfz’pi—j
® Hamilton-Jacobi equatlon glve 2(d+1) coupled ODEs
dv; _OH —dp; _OH de; _ o 1h dpj _h =~
d  dp,. dt | dm; a9 T L g T PR

Initial coordinates unknown, final coordinates known!
Equations are now in d+1 dimensions!

Hamiltonian no longer conserved!



Solution ||

Find hidden conservation laws and explicit backward equations

reduce 2(d+1) first order ODE to | second order ODE

d?u - ng—1 du Dd—1
5 i ajd — O
dr v dr U

Nontrivial solution when d>2

Numerical solution gives percolation threshold (d=3)

t, = 1.243785, L, = 0.577200

The size distribution of components at the critical point

e ~ Ak~5/?

1

0.8

0.6

Mean-field percolation e |

041

Hamilton-Jacobi theory gives
all percolation parameters o




Finite-size scallng @j @ @
Degree distribution
(d—1)!

n; ~ , lnt —(d=1-7)
J ]|

Regular random graph emerges in several steps

|. Giant component emerges at finite time

t1 = 1.243785 deterministic
2. Graph becomes fully connected emerges at time
Nng~1= ty ~ N(InN)~(d=1 stochastic

3. Regular random graph emerges at time
Nng—1~ 1= tz ~ N stochastic

Giant fluctuations in completion time



Summary

Dynamic formation of regular random graphs

Degree distribution is truncated Poissonian
Hamilton-Jacobi formalism powerful

Percolation parameters with essentially arbitrary precision
Mean-field percolation universality class

A multitude of finite-size scaling properties

Giant fluctuations in completion time

Theory applicable to broader set of evolving graphs



chapter 5
aggregation

chapter |2
population
dynamics

chapter 13
complex

networks

A Kinetic View of

STATISTICAL

Pavel L. Krapivsky
Sidney Redner
Eli Ben-Naim

Cambridge University Press 2010



